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Laboratoire de Mathématiques et de leurs Applications - Pau (UMR CNRS 5142),

Batiment IPRA, Avenue de l’Université, F-64013 PAU cedex, France
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Abstract

A system subject to an accumulating deterioration and continuous monitoring is analyzed
in this paper. The system deterioration is modelled using a gamma process and the system is
considered as failed when its degradation level exceeds a failure threshold. The maintenance
team lasts a fixed time to start the maintenance actions. To prevent downtime, an alert signal
is sent in advance to the maintenance team when the degradation level of the system exceeds
a preventive threshold. At the maintenance time, three maintenance actions can be performed:
preventive replacement, corrective replacement and repair. We assume that the repair is im-
perfect in the sense that it reduces a part of the degradation accumulated by the system from
the last maintenance action. Under these assumptions, integral equations fulfilled by different
performance measures are obtained. Numerical examples are given that illustrate the analytical
results.

Index Terms– Imperfect maintenance, gamma process, semi-Markov process, Markov re-
newal equation, delayed repair, maintenance policy, Monte Carlo method.

1 Introduction

Performance measures are used in various stages of the system life cycle to measure and predict
the system behaviour. Two traditional performance measures that describe the functioning of the
system are the reliability and the pointwise availability. The pointwise availability at time t is
defined as the probability that a system is operational at time t. Mercier [16] presented different
stochastic models and exposed some tools for the availability assessment of a system. On the
other hand, the reliability at time t is defined as the probability that the system lifetime exceeds
t. A general performance measure that generalizes the previous measures is the interval reliability
defined as the probability for the system to remain operational throughout a given time interval
[2]. That is, denoting by Yu the system state at time u and by U the subset of operating states of
a system, the interval reliability is defined as

IR(t, t+ x) ≡ P (Yu ∈ U, t ≤ u ≤ t+ x) .
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The interval reliability includes both reliability and pointwise availability as particular cases,
see [5] and subsection 4.4 for details.

Markov models with finite state spaces are commonly used tools for the evaluation of tran-
sient performance measures of a system. For Markov models, the holding times are exponentially
distributed which eases the calculus of the performance measures. However, the assumption of
exponential holding times is often too restrictive. Considering more general holding-times leads
to semi-Markov processes, which are less amenable to analyze but provide more flexible models.
By the use of semi-Markov models, most transient performance measures fulfill a set of integral
equations named Markov renewal equations [12]. The Markov renewal equations can be seen as a
set of Volterra integral equations of the second kind. Even in the case of a finite state space, there
generally exists no solution in closed form to these equations, which have to be solved numerically
[15]. A first possibility is to use Laplace transform techniques, which requires numerical inversion
of Laplace transforms. Due to the instability of the numerical inversion, this technique is not al-
ways an appropriate method for its numerical computation (see [4] and [7]). Another possibility is
to use two-point trapezoidal rules [5, 6], or other discretization techniques [9, 15] which allow to
get bounds for the performance measures of interest. Then, even for a semi-Markov process with
finite state space, the computation of most transient performance measures requires the use and
development of specific numerical tools for the solving of the Markov renewal equations.

In this paper, we analyze some performance measures for a continuously monitored system with
gamma process deterioration and subject to a Condition-Based Maintenance (CBM) program. The
setting of the problem is inspired by the framework exposed in [17]. We assume that the system
fails when its degradation level exceeds a failure threshold L. When scheduled, the operation
of the maintenance team begins after a constant delay time τ . This delay time could stand for
the maintenance resources mobilization (tools, maintenance crew, ...). Due to this delay and
trying to avoid the system downtime, the call to the maintenance team is scheduled when the
degradation level of the system exceeds a preventive threshold M (0 < M < L). At the arrival
of the maintenance team, if the system fails during the delay time, the system is replaced by a
new one (corrective replacement). Otherwise, it depends on the degradation level of the system
when the maintenance team arrives: if the system is very deteriorated, it is preventively replaced;
if the system is still in rather good health, it is kept going on, after some adjustments however.
As an example for this kind of adjustments, one may think of the ballast compacting of a railway
track, which allows to improve the so-called levelling of the track but do not allow to put the track
geometry back to its initial perfect state [13]. In a more general setting, the adjustments that we
have in mind lower the system deterioration level but remain imperfect, in the sense that they
do not bring the system back to its brand new state. They hence correspond to some imperfect
repair. The effect of the imperfect maintenance on the degradation process has been analyzed
under different approaches in the literature. In [8], [13] and [18], after an imperfect maintenance,
the system degradation is reduced according to a random continuous random variable. In Farahani
[10], the impact of the imperfect maintenance is showed in the parameters of the gamma process
that change after an imperfect maintenance action. In [17], mimicking a first-order Arithmetic
Reduction of Age for recurrent events, imperfect maintenance actions reduce the age of the system.

Following the spirit of virtual age models for recurrent events [11] and analogously to the
approach of [19], we assume that each imperfect maintenance action reduce the degradation level
accumulated since the last maintenance action. Under this approach, the functioning of the system
is described as a semi-regenerative process with continuous state space. Transient performance
measures are proved t0 fulfill Markov renewal equations. Since the state space is continuous, the
numerical resolution of the Markov renewal equation requires a high computational effort. In this
paper, the performance measures are approximated not only using Monte Carlo simulation but

2



also using a numerical method that combines numerical integration, interpolation techniques and
Monte Carlo simulation.

The envisioned performance measures are the interval reliability, the reliability, the pointwise
availability and the expected cumulated uptime. A first interest of these indicators is that they
allow for a better understanding of the performance of the CBM policy. A second interest is
that they could be used for maintenance optimization purpose, where level M might be chosen to
optimize one among these performance measures, eventually under constraints based on the other
indicators. As an example, one could imagine be interested in finding M which maximizes the
expected cumulated uptime on a fixed foreseen operation horizon [0, t0] under the constraint that
the poinwise availability should remain above a given availability threshold up to time t0. One
could also classically consider maximizing a cumulated cost function on [0, t0] constructed on the
proposed indicators (which could for instance include a unitary benefit per unit time when the
system is up and a unitary unavailability cost when it is down).

The paper is structured as follows. In Section 2, the framework of the functioning of the system
is described. Section 3 develops some preliminary mathematical results. Section 4 is focused on the
calculus of the performance measures and on the Markov renewal equations that they fulfill. Section
5 shows some numerical examples of the measures calculated previously and Section 6 concludes.

2 Framework of the problem

We consider a unitary system working under the following scheme.

1. The system is subject to an intrinsic deterioration modelled by a gamma process {Xt, t ≥ 0},
where the degradation of the system at time t, Xt, is gamma distributed Γ (αt, β) with
probability distribution function (p.d.f.)

ft (x) =
βαt

Γ (αt)
xαt−1e−βx1R+ (x) α > 0, β > 0.

We recall that a gamma process is a Lévy process (a process with homogeneous and indepen-
dent increments) with Lévy measure given by

µ (ds) = α
e−βs

s
1R∗

+
(s) ds, (1)

where 1{} stands for the indicator function. Let Ft (F̄t) be the cumulative distribution
function (survival function) of Xt, respectively.

2. We assume that the system fails when its degradation level exceeds the failure threshold L.
Let σL be the time to the system failure, that is,

σL = inf (t > 0 : Xt > L) .

3. Maintenance team needs τ time units to arrive and start the repair. To avoid the system
downtime, an alert signal is sent to the maintenance team as soon as the system degradation
reaches a preventive threshold M (0 < M < L), namely at time σM , with

σM = inf (t > 0 : Xt > M) .

At time σM + τ , maintenance tasks start under the following scheme.
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• If the system is down at the maintenance team’s arrival, the system is replaced by a new
one (corrective replacement).

• If the system is working at the maintenance team’s arrival, the maintenance action
depends on the system deterioration level:

– If the system is not too much deteriorated, an imperfect repair is performed. This
repair removes a part (the ρ per cent) of the deterioration accumulated by the system
since the last maintenance action (or since t = 0), where ρ ∈]0, 1[. This imperfect
repair is performed only if it allows to bring the system deterioration level below
M . In that case, the system is said to be maintainable.

– If the system is too deteriorated, the system is considered to be unmaintainable and
a preventive replacement is performed. This case happens when, after imperfect
repair, the degradation level of the system would still exceed M .

All the maintenance actions are considered as instantaneous.

Let {Yt, t ≥ 0} be the process that describes the evolution of the maintained system. We also

set
{
X

(n)
t , t ≥ 0

}
for n = 1, 2, ... to be independent copies of the gamma process {Xt, t ≥ 0}. These

copies are used to model the system intrinsic deterioration after each maintenance action at time

S1, S2, ..., Sn, ... Corresponding reaching times of the threshold L (resp. M) are denoted by σ
(n)
L

(resp. σ
(n)
M ) for n = 1, 2, ...

The first maintenance action takes place at time S1 = U1 = σ
(1)
M + τ . We have Yt = X

(1)
t for all

0 ≤ t < S1, and YS−
1

(YS1) is the system degradation level just before (after) the first maintenance

action, with YS−
1

= X
(1)
U1

(almost surely). At time S1, different cases are possible:

• If X
(1)
U1

> L : the system failed before S1. An instantaneous corrective replacement takes

place at time S1 = σ
(1)
M + τ and the system is replaced by a new one. Therefore: YS1 = 0.

• If X
(1)
U1
≤ L : the eventual imperfect repair would put the system back to the deterioration

level (1− ρ)X
(1)
U1

.

– if (1− ρ)X
(1)
U1

> M : the system is unmaintainable and it is preventively replaced by a
new one at time S1; hence YS1 = 0.

– if (1− ρ)X
(1)
U1
≤M : the imperfect repair is performed and YS1 = (1− ρ)X

(1)
U1

.

Note that the case X
(1)
U1
≤ L and (1− ρ)X

(1)
U1

> M is possible only when M < (1− ρ)L. Also,
the different cases can be summarized into:

YS1 =

{
0 if X

(1)
U1

> min
(
L, M

1−ρ

)
,

(1− ρ)X
(1)
U1

otherwise.

Starting from YS1 , the evolution of the system is assumed to be independent of {Yt, t < S1} and

is modelled by
{
X

(2)
t , t ≥ 0

}
up to the second maintenance action. The reaching time of level M

then is
inf
(
t > S1 : YS1 +X

(2)
t−S1

> M
)

= S1 + σ
(2)
M−YS1

.
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A second maintenance action is next planned at time S2 = S1 + U2, with U2 = σ
(2)
M−YS1

+ τ .

More generally, assume S1, ..., Sn−1 and {Yt, t < Sn−1} to be constructed, with n ≥ 2. Let

Un = σ
(n)
M−YSn−1

+ τ and Sn = Sn−1 +Un. We first set Yt = YSn−1 +X
(n)
t−Sn−1

for all Sn−1 ≤ t < Sn,

and consequently, the system degradation level just before the n-th maintenance action is YS−
n

=

YSn−1 +X
(n)
Un

(almost surely). The degradation level just after the n-th maintenance action is:

YSn =

{
0 if X

(n)
Un

> min
(
L− YSn−1 ,

M−YSn−1

1−ρ

)
,

YSn−1 + (1− ρ)X
(n)
Un

otherwise.

A new maintenance action is next planned at time Sn+1 = Sn+Un+1, with Un+1 = σ
(n+1)
M−YSn

+τ .
As in the previous maintenance times, three maintenance situations are depicted under this general
setting: a corrective replacement, a preventive replacement and an imperfect repair.

After a maintenance action at time Sn, the future evolution of the maintained system {Yt, t ≥ Sn}
depends on the past {Yt, t ≤ Sn} only through YSn and the process {Yt, t ≥ 0} appears as a semi-
regenerative process with underlying Markov renewal process {(Sn, YSn) , n ∈ N} and inter-arrival

times the Un’s, see [1]. The process
{(
Sn,
(
YS−

n
, YSn

))
, n ∈ N

}
also is a Markov renewal process,

which is needed for the development of the reliability and interval reliability functions.

3 Development of the kernels

The aim of this section is to obtain the kernel of the Markov renewal processes of interest. To
achieve this goal, we first start with the p.d.f. of (S1, YS−

1
), where we recall that S1 denotes the

time of the first maintenance action and YS−
1

the system degradation level just before the first
maintenance action.

Lemma 1 The p.d.f. of
(
S1, YS−

1

)
is provided by:

hM (s, x) =

∫∫
R2
+

1{M≤x−y<M+u}fs−τ (x− y − u)fτ (y)µ(du)dy

for all s > τ and x > M , and hM (s, x) = 0 elsewhere.

Proof. Based on (S1, YS−
1

) = (σM + τ,XσM+τ ) and on the independent increments of {Xt, t ≥ 0},

the random vector (S1, YS−
1

) is identically distributed as (σM , XσM ) + (τ,X
(1)
τ ), where (τ,X

(1)
τ )

is independent on (σM , XσM ). The p.d.f. of (S1, YS−
1

) hence is the convolution of the p.d.f. of

(σM , XσM ) and of the distribution of (τ,X
(1)
τ ). By Bertoin [3], the p.d.f. of (σM , XσM ) is given by

gM (t, y) = 1{M≤y}

∫ ∞
0

1{y<M+s}ft(y − s)µ(ds),

where µ(ds) denotes the Lévy measure of the gamma process {Xt, t ≥ 0} provided by (1). Hence

hM (s, x) =

∫
R+

gM (s− τ, x− y)fτ (y)dy =

∫∫
R2
+

1{M≤x−y<M+u}fs−τ (x− y − u)fτ (y)µ(du)dy.
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We now derive the kernel Qx(ds, dy, dz) of the Markov renewal process{(
Sn,
(
YS−

n
, YSn

))
, n ∈ N

}
.

Setting Px to be the conditional probability given that the system started from state x:

Px(·) = P(·|Y0 = x),

we recall that

Qx(ds, dy, dz) = Px
(
S1 ∈ ds, YS−

1
∈ dy, YS1 ∈ dz

)
stands for the conditional distribution of

(
S1,
(
YS−

1
, YS1

))
given that the system started from

Y0 = x, which coincides with the conditional distribution of
(
Sn+1,

(
YS−

n+1
, YSn+1

))
given that

YSn = x:

Qx(ds, dy, dz) = P
(
Sn+1 ∈ ds, YS−

n+1
∈ dy, YSn+1 ∈ dz|YSn = x

)
for all n ∈ N.

The proof of the following result is postponed to the Appendix.

Theorem 2 The kernel Qx(ds, dy, dz) of the Markov renewal process
{(
Sn,
(
YS−

n
, YSn

))
, n ∈ N

}
is provided by

Qx(ds, dy, dz) = q̄x(s, z) ds δx+ z−x
1−ρ

(dy) dz

+ 1{
y−x>min

(
L−x,M−x

1−ρ

)}1{s>τ}hM−x(s, y − x) ds dy δ0 (dz)

for all x ∈ [0,M ], where

q̄x(s, z) = 1{0<z−x≤min((1−ρ)(L−x),M−x)}1{s>τ}
1

1− ρ
hM−x

(
s,
z − x
1− ρ

)
(2)

and where δa (dz) stands for the Dirac mass at point a.

The first term of the kernel corresponds to an imperfect maintenance action and the second one
to a corrective or preventive replacement, where the level is set back to 0.

We next derive the kernel qx(ds, dz) of the Markov renewal process {(Sn, YSn), n ∈ N}.

Corollary 3 The kernel qx(ds, dz) of the Markov renewal process {(Sn, YSn), n ∈ N} is given by:

qx(ds, dz) = q̄x(s, z)ds dz + q̊x(s)ds δ0(dz) (3)

for all x ∈ [0,M ], where

q̊x(s) = 1{s>τ}

∫ +∞

min
(
L−x,M−x

1−ρ

) hM−x(s, u) du. (4)
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Proof. The kernel qx(ds, dz) is obtained by integrating Qx(ds, dy, dz) with respect of dy. This
provides:

qx(ds, dz) = q̄x(s, z) ds

(∫ +∞

0
δx+ z−x

1−ρ
(dy)

)
dz

+ 1{s>τ}

(∫ +∞

x+min
(
L−x,M−x

1−ρ

) hM−x(s, y − x) dy

)
ds δ0 (dz)

and the result, noticing that
∫ +∞
0 δx+ z−x

1−ρ
(dy) = 1 and setting u = y − x in the last integral.

We finally give the sub-kernel q∗x(ds, dz) of the Markov renewal process {(Sn, YSn) , n ∈ N}
restricted to the operating states, with:

q∗x(ds, dz) = Px
(
S1 ∈ ds, YS−

1
< L, YS1 ∈ dz

)
(and total mass q∗x([τ,+∞[× [0,M ]) smaller than 1). The proof is postponed to the Appendix.

Corollary 4 The sub-kernel q∗x(ds, dz) is provided by:

q∗x(ds, dz) = q̄x(s, z) ds dz + q̃x(s) ds δ0 (dz)

for all x ∈ [0,M ], with

q̃x(s) = 1{
x≥M−(1−ρ)L

ρ

}
(∫ L−x

M−x
1−ρ

hM−x(s, u) du

)
,

all x ∈ [0,M ].

The terms corresponding to the imperfect maintenance action (q̄x(s, z) ds dz) are identical
for both kernels qx(ds, dz) and q∗x(ds, dz). This is natural because a necessary condition for an
imperfect maintenance action to be performed is that the system is not failed at the maintenance
time. For this term, both unrestricted and restricted kernels to the operating states consequently
coincide.

Remark 5 The system is renewed at each corrective and preventive replacement. This means that,
apart from its semi-regenerative structure, the process {Yt, t ≥ 0} can also be seen as a regenerative
process, with replacement times as renewal times. The cycles between two renewal times however are
much more difficult to analyze than the present semi-Markov cycles delimited by two maintenance
actions, whatever they are. The regenerative structure of {Yt, t ≥ 0} consequently does not bring
much to the finite time analysis of the system. However, based on the fact that the mean hitting
time E(σL) is finite for a gamma process, it is clear that the mean length of a cycle (between two
replacements) is finite too, so that general theorems for regenerative processes with finite expected
cycle lengths can be applied. This shows that {Yt, t ≥ 0} admits a limiting distribution when t→∞,
which is the mean value of {Yt, t ≥ 0} on a cycle [1, Chapter VI: Thm 1.2 ]. Do to the complexity
of the present model, this asymptotic distribution cannot however be computed explicitly.

4 Performance measures

In this section, we show some performance measures of the system.
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4.1 Pointwise availability

Given Y0 = x, let Ax(t) be the pointwise availability of the maintained system at time t

Ax(t) = Px (Yt < L) .

As S1 = τ + σM−x > τ , let us first remark that, if t ≤ τ , then t < S1 and there is no maintenance
action on [0, t]. In that case, Yu = Xu on [0, t] and we simply get:

Ax (t) = P (σL−x > t) = P (Xt < L− x) = Ft (L− x) , (5)

for all t ≤ τ . We next envision the case where t > τ .

Theorem 6 The pointwise availability fulfills the following Markov renewal equation:

Ax (t) = Gx (t) +

∫ t

τ

∫ M

0
Az (t− s) q̄x(s, z)ds dz +

∫ t

τ
A0 (t− s) q̊x(s)ds (6)

for all t > τ , all x ∈ [0,M ] with

Gx (t) =

∫ M−x

0
ft−τ (y)Fτ (L− x− y) dy, (7)

where q̄x(s, z), qx (ds, dy) and q̊x(s) are defined in (2− 4).

Though a similar result is proved in [17] (with a different kernel however), we here provide a
few elements of proof, for a better comprehension of the results. The interested reader may find
more details in [17].
Elements of proof. Let t > τ . We have:

Ax (t) = Px (Yt < L,S1 > t) + Px (Yt < L,S1 ≤ t) (8)

with

Px (Yt < L,S1 > t) = Px (Xt < L, τ + σM > t)

= P (Xt < L− x, σM−x > t− τ)

= P (Xt < L− x,Xt−τ < M − x) . (9)

Based on the homogeneous and independent increments of (Xt)t≥0, the random variables (Xt −Xt−τ )
and Xt−τ are independent with respective p.d.f.s fτ and ft−τ . Writing Xt = Xt−τ + (Xt −Xt−τ )
and starting again from (9), we get:

Px (Yt < L,S1 > t) =

∫∫
R2
+

1{y+z<L−x,y<M−x}ft−τ (y) fτ (z) dy dz

=

∫ M−x

0
ft−τ (y)Fτ (L− x− y) dy

= Gx (t) .

The second term in the right side of (8) is next dealt by conditioning with respect of the past
of the process up to time S1 and by using the Markov property at time S1. This provides the two
last terms in (6).

For the implementation of the numerical techniques developed in Section 5, we use a recursive
scheme fulfilled by the pointwise availability, as provided by the following corollary (with proof
postponed to the Appendix).
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Corollary 7 Setting
A(i)
x (t) = Ax (t)

for all (i− 1) τ < t ≤ iτ , x ∈ [0,M ], i ≥ 1, we have:

A(1)
x (t) = Ft(L− x), for all 0 < t ≤ τ , all x ∈ [0,M ]

and

A(i+1)
x (t) = Gx (t) +

i∑
k=1

∫ τ

0

∫ M

0
A(k)
z (kτ − v) q̄x(t+ v − kτ, z)dv dz (10)

+
i∑

k=1

∫ τ

0
A

(k)
0 (kτ − v) q̊x(t+ v − kτ)dv (11)

for all iτ < t ≤ (i+ 1) τ , all x ∈ [0,M ], all i ≥ 1.

4.2 Expected cumulated uptime

Given Y0 = x, let mx(t) be the expected cumulated uptime in (0, t]

mx(t) =

∫ t

0
Ax(s)ds. (12)

Let us first remark that, if t ≤ τ , using (5), we have

mx(t) =

∫ t

0
Fs(L− x)ds.

For t > τ , we have the following result.

Theorem 8 For t > τ , the expected cumulated uptime at time t fulfills the following Markov
renewal equation

mx(t) = Hx,τ (t) +

∫ M

0

∫ t

τ
my(t− s)qx(ds, dy) (13)

where

Hx,τ (t) =

∫ τ

0
Fs(L− x)ds+

∫ t

τ
Gx(s)ds,

Gx is given by (7) and qx(ds, dy) denotes the kernel of the Markov renewal process {(Sn, YSn) , n ∈ N}
given by (3).

Proof. For t > τ ,

mx(t) =

∫ τ

0
Ax(s)ds+

∫ t

τ
Ax(s)ds.

From (5) and Theorem 6, we have

mx(t) =

∫ τ

0
Fs(L− x)ds+

∫ t

τ
Gx(s)ds+

∫ t

τ

(∫ s

τ

∫ M

0
Ay(s− u)qx(du, dy)

)
ds

= Hx,τ (t) +

∫ M

0

∫ t

τ
my(t− u)qx(du, dy).

Equation (13) allows to write a recursive scheme for the computation of mx(t) in the same way
as the one provided by Corollary 7 for the pointwise availability.
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4.3 Reliability

Given Y0 = x, let Rx (t) be the reliability function of the maintained system at time t,

Rx (t) = Px (T > t) ,

where T is the failure time of the maintained system and t ∈ R+. For t ≤ τ , the reliability is
Rx(t) = Ax(t). For t > τ , we have the following result.

Theorem 9 For t > τ , the reliability function fulfills the following Markov renewal equation

Rx (t) = Gx (t) +

∫ t

τ

∫ M

0
Ry (t− s) q∗x (ds, dy) (14)

for all x ∈ [0,M ], where Gx(t) is given by (7) and where q∗x denotes the sub-kernel of the Markov
renewal process {(Sn, YSn) , n ∈ N} restricted to the operating states, provided by Corollary 4.

A proof of an equivalent result is given in [17]. Also, note that using similar methods as in e.g.
[14] (with tools from [1]), one might expect to have an asymptotically exponential decay for Rx(t)
when t→∞. The study of such a property seems however rather technical and beyond the scope
of the present paper.

Here again, Equation (14) allows to write a recursive scheme for the computation of Rx (t).

4.4 Interval reliability

Given Y0 = x, the interval reliability IRx(t, t+ s) is the conditional probability that the system is
in the set of up states throughout the whole interval [t, t+ s] (t ≥ 0, s ≥ 0)

IRx(t, t+ s) = Px(Yu < L;∀u ∈ [t, t+ s]).

For t+ s ≤ τ , we get that t+ s < S1, hence

IRx(t, t+ s) = Px(Xt+s < L) = Ft+s(L− x).

For t+ s > τ , the following result is obtained. The proof is postponed to the Appendix.

Theorem 10 In the case τ ≤ t, the interval reliability in [t, t + s] fulfills the following Markov
renewal equation

IRx(t, t+ s) = Gx(t+ s) +

∫ t+s

t

∫ M

0
Ry(t+ s− u)q∗x (du, dy)

+

∫ t

τ

∫ M

0
IRy(t− u, t+ s− u)qx (du, dy) (15)

where Gx is given by (7), q∗x and qx denote the kernel and sub-kernel given in Corollaries 3 and 4,
and Ry(·) is the reliability of the system given in Theorem 9.
In the case t < τ < t+ s, we get

IRx(t, t+ s) = Gx(t+ s) +

∫ t+s

τ

∫ M

0
Ry(t+ s− u)q∗x(du, dy).

Here again, Equation (15) allows to write a recursive scheme for the computation of IRx (t, t+ s).
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5 Numerical examples

To illustrate the analytical results, some numerical examples are showed in this section. Firstly, we
shall give some examples of the performance measures computed using Monte Carlo simulation.

A system is subject to a continuous deterioration modelled by a gamma process with parameters
α = 1.5 and β = 3. The system fails when its degradation exceeds the failure threshold L = 9
with expected time E[σL] ' 18.3469 time units. A signal is sent to the maintenance team when the
system degradation exceeds M = 5 with expected time E[σM ] ' 10.3728 time units. The repair
efficiency is given by ρ = 0.5 and the delay time for the repair is τ = 8 time units.

Figure 1 shows the pointwise availability A0(t) versus t given Y0 = 0. The data have been
obtained using Monte Carlo simulation for 21 equally spaced values from 10 to 30 with 40000
realizations in each point.

10 12 14 16 18 20 22 24 26 28 30
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

t

A
0(t

)

Figure 1: Pointwise availability A0(t) versus t

Based on Figure 1, the pointwise availability reaches its minimum at t∗ ' 17 with A0(17) '
0.8639. It means that, for values of t ranging from 10 to 30, the probability that the system is
functioning is greater than 0.8639. Also, oscillations can be observed in Figure 1. A possible
explanation is the following: At the beginning, no maintenance actions are performed and the
availability first decreases, due to failures. A first preventive maintenance action takes place at
time σM + τ with mean about 18.4 time units. The impact of this action can be observed in Figure
1, where the availability increases roughly from time 17 up to time 22. After a while, this first
preventive maintenance action has no more impact and the availability starts again to decrease.
However, the time to the second preventive maintenance action is shorter than for the first one,
because the first preventive maintenance action is not perfect, so that the system reaches level M
more quickly. This leads to some damped oscillations that can be seen in Figure 1.

Given Y0 = 0, Figure 2 shows the interval reliability for different values of the left point of the
interval and constant length, 10 time units, IR0(t, t + 10). The data have been obtained using
Monte Carlo simulation for 121 values of t ranging from 10 to 70, with 40 000 realizations in each
point. Based on Figure 2, we can see that the interval reliability reaches its minimum at t∗ ' 15
with IR0(15, 25) ' 0.4391. As expected from Remark 5, we also notice the asymptotic behavior of
the interval reliability, which stabilizes and tends to 0.57 when t→∞.
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Figure 2: Interval reliability IR(t, t+ 10) versus t

Using the same data set, for fixed t = 20, Figure 3 shows the interval reliability for different
values of s divided by s, IR(5, 5 + s)/s given Y0 = 0. The results have been obtained using Monte
Carlo simulation for 40 values of s ranging from 10 to 30 and 40 000 simulations in each point. We
see that IR(5, 5 + s)/s is a non-increasing function in s

5 10 15 20 25 30
0

0.04

0.08

0.12

0.16

s

IR
0(5

,5
+

s)

Figure 3: Interval reliability IR0(5, 5 + s) versus s

Given Y0 = 0, Figure 4 shows the mean proportion of the time that the system is working in
the interval [0, t], that is, m0(t)/t for different values of t. These values have been calculated using
Monte Carlo simulation for 31 values of t ranging from 30 to 60 with 50 000 simulations in each
point.

Using the same data set, that is, L = 9,M = 5, α = 1.5, β = 3, τ = 8, ρ = 0.5, we
evaluate the system reliability. Figure 5 shows the reliability of the system at time t (that is,
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Figure 4: Fraction of time that the system is up in [0, t] versus t

R(t) = P (T > t)) where T denotes the system lifetime. These values have been calculated using
Monte Carlo simulation for 51 values from 0 to 100 with 40000 simulations in each point.
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R
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Figure 5: Probability that the system lifetime exceeds t given Y0 = 0

We now compute a numerical approximation of the pointwise availability, using the recursive
scheme provided in Corollary 7. To begin with, we need to compute an approximation of the
kernel qx(ds, dz). A first possibility might be to use the theoretical expression of qx(ds, dz) given
in Corollary 3. However, the heavy tail around 0 of the Lévy measure µ (dx) of the gamma process
{Xt, t ≥ 0} entails some numerical instability for the computation of the function hM (defined in
Lemma 1) and hence, for the computation of qx(ds, dz). We consequently prefer use Monte-Carlo
simulations plus interpolation techniques based on spline functions to compute an approximation
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of the kernel
qx(ds, dz) = q̄x(s, z)ds dz + q̊x(s)ds δ0(dz).

More specifically, we compute approximations ̂̄qx(s, z) and ̂̊qx(s) of the two functions q̄x(s, z) and
q̊x(s) involved in the kernel qx(ds, dz). This is done through the following steps.

1. Taking M = 5, we first discretize the set [0,M ] into 50 equally spaced points from 0 to M = 5.
The corresponding grid is denoted by E in the following.

2. For each fixed x element of E, we obtain m = 480 000 simulation results for (S1, YS1) given
Y0 = x by the Monte Carlo method. We denote by (sxi , z

x
i ) for i = 1, 2, . . . , 480 000 the results

of these simulations.

3. For each fixed x element of E, let Ix1 = (τ,max(sxi )] and Ix2 = [0,M ] be the range of the
values (sxi , z

x
i ), that is, (sxi , z

x
i ) ∈ Ix1 × Ix2 . We divide the intervals Ix1 and Ix2 into N = 299

disjoint intervals
Ix1 = Ix1,1 ∪ Ix1,2 ∪ Ix1,3 ∪ . . . Ix1,N

where Ix1,i = (ax1,i, a
x
1,i+1] for i = 1, 2, . . . , N and

ax1,i = τ + ∆sx(i− 1), i = 1, 2, . . . , N + 1

and ∆sx = (max(sxi )− τ)/N .
In the same way

Ix2 = Ix2,1 ∪ Ix2,2 ∪ Ix2,3 ∪ . . . Ix2,N
where Ix2,1 = {0}, Ix2,i = (ax2,i, a

x
2,i+1] for i = 2, 3, . . . N with

ax2,i = ∆zx(i− 2), i = 2, . . . , N + 1,

where ∆zx = M/(N − 1).
For each simulated pair (sxi , z

x
i ), we find subindices j and k such as

(sxi , z
x
i ) ∈ Ix1,j × Ix2,k.

4. For each fixed x element of E, we compute the function ̂̄qx (resp. ̂̊qx) on the grid

{(a1,j , a2,k); j = 1, 2, . . . , N ; k = 2, 3, . . . N}

(resp. {(a1,j); j = 1, 2, . . . , N}) through

̂̄qx(a1,j , a2,k) =
]
{

(sxi , z
x
i ) ∈ Ix1,j × Ix2,k

}
m×∆sx ×∆zx

,

̂̊qx(a1,j) =
]
{

(sxi , 0) ∈ Ix1,j × Ix2,1
}

m×∆zx
.

5. The approximation ̂̄qx(s, z) (resp. ̂̊qx(s)) is next constructed on Ix1 ×Ix2 = (τ,max(sxi )]×[0,M ]
(resp. Ix1 ) for each x ∈ [0,M ] through the following.
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(a) If x is element of E, the functions ̂̄qx(s, z) and ̂̊qx(s) are already known on the grids
from point 4. The two functions are extended to Ix1 × Ix2 and Ix1 , respectively, using
interpolation techniques based on spline functions and starting from their known values
on the grids. This interpolation is performed using functions interp1 and interp2 of
Matlab programme for the functions ̂̊qx(s) and ̂̄qx(s, z) respectively replacing the values
outside of the intervals Ix1 and Ix1 × Ix2 with 0 respectively.

(b) If x ∈ [0,M ] does not belong to E, we search for the element x∗ of E which is the nearest
from x and we set

̂̄qx(s, z) = ̂̄qx∗(s, z), ̂̊qx(s) = ̂̊qx∗(s), (16)

for the grid points. From (a), functions ̂̄qx∗ and ̂̊qx∗ are extended to Ix1 × Ix2 and Ix1 .

We next use the approximated kernel to compute the availability and we consider the following
procedure. We here assume that the system starts from an element x of the grid E. If it is not the
case, we just substitute x by x∗ ∈ E, as previously explained in point 5.

1. We consider grids {zi, i = 1, 2, . . . , n}, {yi, i = 1, 2, . . . , n} and {si, i = 1, 2, . . . , n} composed
of n = 20 equally spaced points of the intervals [0,M − x], [0,M ] and [0, τ ] given by

zi = (i− 1)
M − x
n− 1

, i = 1, 2, . . . , n, ∆z = zi+1 − zi,

yi = (i− 1)
M

n− 1
, i = 1, 2, . . . , n ∆y = yi+1 − yi,

si = (i− 1)
τ

n− 1
, i = 1, 2, . . . , n ∆s = si+1 − si.

We also set z∗i , y∗i and s∗i to be the middle points of these grids, that is

z∗i = zi + ∆z/2, y∗i = yi + ∆y/2, s∗i = si + ∆s/2.

2. Based on the recursive scheme provided by Corollary 7 and using middle point method for
approximating the integral, we estimate the pointwise availability Âx(t) at time t starting
from Y0 = x as follows.

• For t < τ ,
Â(1)
x (t) = Ft(L− x), (17)

• For iτ < t ≤ (i+ 1)τ

Â(i+1)
x (t) =

n∑
j=1

ft−τ (z∗j )Fτ (L− x− z∗j )∆z

+

i∑
k=1

n∑
j=1

n∑
i=1

Â
(k)
y∗i

(kτ − s∗j )̂̄qx(s∗j + t− kτ, y∗i )∆y ∆s

+

i∑
k=1

n∑
j=1

Â
(k)
0

(
kτ − s∗j

) ̂̊qx(s∗j + t− kτ)∆s (18)
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t 11 12 13 14 15 16 17

MC Simulation 0.9973 0.9926 0.9831 0.9663 0.9412 0.9090 0.8773
Numerical method 0.9966 0.9921 0.9825 0.9661 0.9415 0.9181 0.8781

t 18 19 20 21 22 23 24 25

MC Simulation 0.8858 0.9025 0.9228 0.9395 0.9466 0.9392 0.9258 0.9142
Numerical method 0.8778 0.9119 0.9307 0.9591 0.9481 0.9420 0.9095 0.8642

Table 1: Pointwise availability at time t versus t

Table 1 and Figure 6 show the pointwise availability A0(t) calculated using strict Monte Carlo
simulation and the pointwise availability calculated by the previous numerical method for different
values of t. Data for Monte Carlo method have been obtained for 13 equally spaced points ranging
from 11 to 23 with 50 000 simulations in each point. Both methods mostly coincides for t smaller
than 2τ = 16 time units. Monte Carlo method however shows a smoother behaviour when compared
to the numerical method for larger t.

12 14 16 18 20 22 24
0.85

0.9

0.95

1

t

A
0(t

)

 

 

Monte Carlo method

Numerical method

Figure 6: Pointwise availability at time t versus t

Taking into account (12) and using the middle point method to approximate integrals, we
can estimate the expected cumulated uptime from (17) and (18). For fixed x, we consider a grid
{wi, i = 1, 2, . . . 15} composed of 15 equally spaced points of the interval [0, t] given by

wi = (i− 1)
t

14
, i = 1, 2, . . . , 15, ∆w = wi+1 − wi.

We set w∗i to be the middle point of this grid, that is, w∗i = wi + ∆w/2, and, from (12), we get an
estimation of the expected cumulated uptime as follows

m̂x(t) =

15∑
j=1

Âx(w∗j )∆w,

where Âx is given by (17) and (18).
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For different values of t, Figure 7 shows the uptime proportion in an interval of time calculated
using strict Monte Carlo simulation and the uptime proportion calculated from the numerical
method explained above. Data for Monte Carlo method have been obtained for 13 equally spaced
points ranging from 9 to 23 with 30 000 simulations in each point. For values of t greater than 16,
the difference between both methods increases considerably. As in Figure 6, Monte Carlo method
shows a smoother behaviour than the numerical method.
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Figure 7: Proportion of the expected cumulated uptime at time t versus t

6 Conclusions

In this paper, the functioning of a system subject to imperfect maintenance and delayed repair is
analyzed. The deterioration of the system is modelled using a gamma process and the functioning of
the system is described through a semi-regenerative process with continuous state space. Since the
overshoot of the gamma process is taken into account, a complex stochastic model is developed to
analyze the transient behaviour of the system. Also, this paper shows a numerical method to obtain
the numerical solution of Markov renewal equations fulfilled by some performance measures of the
system. This numerical method combines Monte Carlo simulation, interpolation techniques and
numerical integration. Up to our knowledge, most of the works that deal with semi-regenerative
processes in continuous state space use Monte Carlo simulation to approximate the solutions of
the Markov renewal equations. The development of this numerical method hence represents an
important contribution of the paper. Its main interest is that is allows for a recursive computation
of the performance measures. The kernel is computed once for all at the beginning, as well as the
performance measures on [0, τ ], starting from any given initial deterioration level Y0. The compu-
tation is next made on (τ, 2τ ], (2τ, 3τ ], . . . using the same kernel whatever Y0 and the performance
measure of interest are. In case several performance measures are required starting from several
different possible initial deterioration levels, one could easily think that it should save computation
times when compared to strict Monte-Carlo simulations. However, based on the numerical results,
it seems that the error made on the kernel and on the computation of the performance measures
on [0, τ ] is quickly propagating over the successive time intervals (especially when dealing with a
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unitary performance measure per unit time as in Figure 7). We consequently would suggest to
use the numerical method when the point is to compute the performance measures up to a short
horizon time (mostly up to 2τ or 3τ) but to use strict Monte-Carlo simulations for larger t.

Appendix

Proof of Theorem 2.
Given Y0 = x, we set Sx = S1 = τ + σM−x. This provides YS−

1
= x+XSx and

YS1 =

 0 if XSx > min
(
L− x, M−x1−ρ

)
x+ (1− ρ)XSx if XSx ≤ min

(
L− x, M−x1−ρ

)
.

For all ϕ measurable and non negative, we hence have:

Ex
(
ϕ
(
S1, YS−

1
, YS1

))
= J1 (x) + J2 (x)

with

J1 (x) = E
[
ϕ (Sx, x+XSx , x+ (1− ρ)XSx)× 1{

XSx≤min
(
L−x,M−x

1−ρ

)}] ,
J2 (x) = E

[
ϕ (Sx, x+XSx , 0)× 1{

XSx>min
(
L−x,M−x

1−ρ

)}] .
Based on Lemma 1, the joint p.d.f. of (Sx, XSx) is hM−x(·, ·). We derive:

J1(x) =

∫∫
R2
+

ϕ (s, x+ u, x+ (1− ρ)u)1{
u≤min

(
L−x,M−x

1−ρ

)}hM−x(s, u) ds du

=

∫∫∫
R3
+

ϕ (s, y, z)1{z−x≤min((1−ρ)(L−x),M−x)}h
M−x

(
s,
z − x
1− ρ

)
1{s>τ}1{z>x}

× 1

1− ρ
ds δx+ z−x

1−ρ
(dy) dz

and

J2(x) =

∫∫
R2
+

ϕ (s, x+ u, 0)1{
u>min

(
L−x,M−x

1−ρ

)}hM−x(s, u)1{s>τ} ds du

=

∫∫∫
R3
+

ϕ (s, y, z)1{
y−x>min

(
L−x,M−x

1−ρ

)}hM−x(s, y − x)1{s>τ} ds dy δ0 (dz) ,

which provides the result.

Proof of Corollary 4.
The sub-kernel q∗x(ds, dz) restricted to the operating states is provided by:

q∗x(ds, dz) =

∫ L

0
Qx(ds, dy, dz)
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where the integration is made with respect of dy. This provides:

q∗x(ds, dz) = q̄x(s, z) ds

(∫ L

0
δx+ z−x

1−ρ
(dy)

)
dz

+ 1{s>τ}1
{
x+min

(
L−x,M−x

1−ρ

)
≤L
}
(∫ L

x+min
(
L−x,M−x

1−ρ

) hM−x(s, y − x) dy

)
ds δ0 (dz) .

Noticing that q̄x(s, z) > 0 implies that z − x ≤ (1− ρ) (L− x) and consequently x + z−x
1−ρ ≤ L, we

get
∫ L
0 δx+ z−x

1−ρ
(dy) = 1 and the result, noting that

1{
x+min

(
L−x,M−x

1−ρ

)
≤L
} ∫ L

x+min
(
L−x,M−x

1−ρ

) hM−x(s, y − x) dy

= 1{
x≥M−(1−ρ)L

ρ

}
(∫ L−x

M−x
1−ρ

hM−x(s, u) du

)

with u = y − x.

Proof of Corollary 7.
The case i = 1 is provided by (5). As for the recursive formula (11), starting from (6) and

taking t such that iτ < t ≤ (i+ 1) τ , we have:

A(i+1)
x (t)

= Gx (t) +

∫ t−(i−1)τ

τ

∫ M

0
Ay (t− s) qx (ds, dy) +

i−1∑
k=1

∫ t−(k−1)τ

t−kτ

∫ M

0
Ay (t− s) qx (ds, dy) .

Now, as qx (ds, dy) is null on [0, τ ]× [0,M ] (because S1 > τ almost surely), we have∫ τ

t−iτ

∫ M

0
Ay (t− s) qx (ds, dy) = 0.

We can hence write:∫ t−(i−1)τ

τ

∫ M

0
Ay (t− s) qx (ds, dy) =

∫ t−(i−1)τ

t−iτ

∫ M

0
Ay (t− s) qx (ds, dy)

and

A(i+1)
x (t) = Gx (t) +

i∑
k=1

∫ t−(k−1)τ

t−kτ

∫ M

0
Ay (t− s) qx (ds, dy)

= Gx (t) +
i∑

k=1

∫ t−(k−1)τ

t−kτ

∫ M

0
Ay (t− s) q̄x (s, y) ds dy

+
i∑

k=1

∫ t−(k−1)τ

t−kτ
A0 (t− s) q̊x (s) ds.
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Setting vk = s− t+ kτ in the k − th term of each sum, we get

A(i+1)
x (t) = Gx (t) +

i∑
k=1

∫ τ

0

∫ M

0
Ay (kτ − vk) q̄x (t+ vk − kτ, y) dvk dy

+
i∑

k=1

∫ τ

0
A0 (kτ − vk) q̊x (t+ vk − kτ) dvk

and the result, noting that Ay (kτ − vk) = A
(k)
y (kτ − vk) because (k − 1) τ < kτ − vk ≤ kτ .

Proof of Theorem 10.
First, we consider the case τ ≤ t. We have

IRx(t, t+ s) = Px(Yu < L;∀u ∈ [t, t+ s])

= Px(Yu < L;S1 > t+ s, ∀u ∈ [t, t+ s]) + Px(Yu < L; t < S1 < t+ s, ∀u ∈ [t, t+ s])

+ Px(Yu < L;S1 ≤ t,∀u ∈ [t, t+ s]). (19)

We calculate the three terms of the above equality. The first term is

Px (Yu < L;S1 > t+ s, ∀u ∈ [t, t+ s]) = P (Xt+s < L− x, τ + σM−x > t+ s)

= P (Xt+s < L− x,Xt+s−τ < M − x) . (20)

This term is similar to the first term in (6), proved in [17]. We however recall its computation here,
for sake of completeness. Starting again from (20), we first write:

Px (Yu < L;S1 > t+ s, ∀u ∈ [t, t+ s]) = P (Xt+s −Xt+s−τ < L− x−Xt+s−τ , Xt+s−τ < M − x)

= E
[
1{Xt+s−τ<M−x}E

(
1{Xt+s−Xt+s−τ<L−x−Xt+s−τ}|Xt+s−τ

)]
.

Based on the independent and homogeneous increments of a gamma process, we have:

E
(
1{Xt+s−Xt+s−τ<L−x−Xt+s−τ}|Xt+s−τ

)
= Fτ (L− x−Xt+s−τ ) .

This provides:

Px (Yu < L;S1 > t+ s, ∀u ∈ [t, t+ s]) = E
(
1{Xt+s−τ<M−x}Fτ (L− x−Xt+s−τ )

)
=

∫ M−x

0
ft+s−τ (u)Fτ (L− x− u)du

= Gx(t+ s).

For the second term of (19), we have

Px (Yu < L; t < S1 ≤ t+ s, ∀u ∈ [t, t+ s]) = Ex

[
1{t<S1≤t+s}1

{
Y
S−1

<L

}1{Yu<L,∀u∈[S1,t+s]}

]

= Ex

[
1{t<S1≤t+s}1

{
Y
S−1

<L

}E(1{Yu<L,∀u∈[S1,t+s]}|(S1, YS−
1
, YS1)

)]
.

Based on the Markov property, we have

E
(
1{Yu<L,∀u∈[S1,t+s]}|(S1, YS−

1
, YS1)

)
= IRYS1 (0, t+ s− S1) = RYS1 (t+ s− S1).
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We derive:

Px (Yu < L; t < S1 ≤ t+ s, ∀u ∈ [t, t+ s]) = Ex

[
1{t<S1≤t+s}1

{
Y
S−1

<L

}RYS1 (t+ s− S1)

]

=

∫ t+s

t

∫ M

0
Ry(t+ s− u)q∗x (du, dy) .

Finally, for the last term of (19), we get

Px (Yu < L;S1 < t,∀u ∈ [t, t+ s]) = Ex
[
1{S1<t}E

(
1{Yu<L,∀u∈[t,t+s]}|(S1, YS1)

)]
= Ex

[
1{S1<t}IRYS1 (t− S1, t+ s− S1)

]
=

∫ t

τ

∫ M

0
IRy(t− u, t+ s− u)qx (du, dy) ,

which ends the proof in the case τ ≤ t.
Let us now assume t < τ < t+ s. We have

IRx(t, s) = Px (Yu < L,∀u ∈ [t, t+ s]; t+ s < S1) + Px (Yu < L,∀u ∈ [t, t+ s]; t+ s ≥ S1)

= Gx(t+ s) + Px
(
YS−

1
< L;Yu < L,∀u ∈ [S1, t+ s]; t+ s ≥ S1

)
= Gx(t+ s) + Ex

[
1{t+s≥S1}1

{
Y
S−1

<L

}E(1{Yu<L,∀u∈[S1,t+s]}|(S1, YS−
1
, YS1)

)]

= Gx(t+ s) + Ex

[
1{t+s≥S1}1

{
Y
S−1

<L

}RYS1 (t+ s− S1)

]

= Gx(t+ s) +

∫ t+s

τ

∫ M

0
Ry(t+ s− u)q∗x(du, dy)

using similar arguments.
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